Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 19(5): e1010750, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37186613

RESUMO

Curli amyloid fibers are a major constituent of the extracellular biofilm matrix formed by bacteria of the Enterobacteriaceae family. Within Escherichia coli biofilms, curli gene expression is limited to a subpopulation of bacteria, leading to heterogeneity of extracellular matrix synthesis. Here we show that bimodal activation of curli gene expression also occurs in well-mixed planktonic cultures of E. coli, resulting in all-or-none stochastic differentiation into distinct subpopulations of curli-positive and curli-negative cells at the entry into the stationary phase of growth. Stochastic curli activation in individual E. coli cells could further be observed during continuous growth in a conditioned medium in a microfluidic device, which further revealed that the curli-positive state is only metastable. In agreement with previous reports, regulation of curli gene expression by the second messenger c-di-GMP via two pairs of diguanylate cyclase and phosphodiesterase enzymes, DgcE/PdeH and DgcM/PdeR, modulates the fraction of curli-positive cells. Unexpectedly, removal of this regulatory network does not abolish the bimodality of curli gene expression, although it affects dynamics of activation and increases heterogeneity of expression levels among individual cells. Moreover, the fraction of curli-positive cells within an E. coli population shows stronger dependence on growth conditions in the absence of regulation by DgcE/PdeH and DgcM/PdeR pairs. We thus conclude that, while not required for the emergence of bimodal curli gene expression in E. coli, this c-di-GMP regulatory network attenuates the frequency and dynamics of gene activation and increases its robustness to cellular heterogeneity and environmental variation.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Ativação Transcricional , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , GMP Cíclico/genética , GMP Cíclico/metabolismo , Sistemas do Segundo Mensageiro , Biofilmes , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
Int J Biol Macromol ; 183: 635-650, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33957199

RESUMO

Natural polysaccharides are well-known biomaterials because of their availability and low-cost, with applications in diverse fields. Cellulose, a renowned polysaccharide, can be obtained from different sources including plants, algae, and bacteria, but recently much attention has been paid to the microorganisms due to their potential of producing renewable compounds. In this regard, bacterial nanocellulose (BNC) is a novel type of nanocellulose material that is commercially synthesized mainly by Komagataeibacter spp. Characteristics such as purity, porosity, and remarkable mechanical properties made BNC a superior green biopolymer with applications in pharmacology, biomedicine, bioprocessing, and food. Genetic manipulation of BNC-producing strains and in situ modifications of the culturing conditions can lead to BNC with enhanced yield/productivity and properties. This review mainly highlights the role of genetic engineering of Komagataeibacter strains and co-culturing of bacterial strains with additives such as microorganisms and nanomaterials to synthesize BNC with improved functionality and productivity rate.


Assuntos
Bactérias/metabolismo , Celulose/biossíntese , Nanopartículas , Bactérias/genética , Técnicas Bacteriológicas , Meios de Cultura , Regulação Bacteriana da Expressão Gênica , Engenharia Genética , Genômica , Metabolômica
3.
Appl Microbiol Biotechnol ; 103(16): 6673-6688, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31168651

RESUMO

Ethanol exerts a strong positive effect on the cellulose yields from the widely exploited microbial producers of the Komagataeibacter genus. Ethanol is postulated to provide an alternative energy source, enabling effective use of glucose for cellulose biosynthesis rather than for energy acquisition. In this paper, we investigate the effect of ethanol supplementation on the global gene expression profile of Komagataeibacter xylinus E25 using RNA sequencing technology (RNA-seq). We demonstrate that when ethanol is present in the culture medium, glucose metabolism is directed towards cellulose production due to the induction of genes related to UDP-glucose formation and the repression of genes involved in glycolysis and acetan biosynthesis. Transcriptional changes in the pathways of cellulose biosynthesis and c-di-GMP metabolism are also described. The transcript level profiles suggest that Schramm-Hestrin medium supplemented with ethanol promotes bacterial growth by inducing protein biosynthesis and iron uptake. We observed downregulation of genes encoding transposases of the IS110 family which may provide one line of evidence explaining the positive effect of ethanol supplementation on the genotypic stability of K. xylinus E25. The results of this study increase knowledge and understanding of the regulatory effects imposed by ethanol on cellulose biosynthesis, providing new opportunities for directed strain improvement, scaled-up bionanocellulose production, and wider industrial exploitation of the Komagataeibacter species as bacterial cellulose producers.


Assuntos
Acetobacteraceae/crescimento & desenvolvimento , Acetobacteraceae/metabolismo , Celulose/biossíntese , Etanol/metabolismo , Meios de Cultura/química , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Redes e Vias Metabólicas/genética
4.
Appl Microbiol Biotechnol ; 103(13): 5339-5353, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31037382

RESUMO

Bacterial nanocellulose (BNC) synthesized by Komagataeibacter hansenii is a polymer that recently gained an attention of tissue engineers, since its features make it a suitable material for scaffolds production. Nevertheless, it is still necessary to modify BNC to improve its properties in order to make it more suitable for biomedical use. One approach to address this issue is to genetically engineer K. hansenii cells towards synthesis of BNC with modified features. One of possible ways to achieve that is to influence the bacterial movement or cell morphology. In this paper, we described for the first time, K. hansenii ATCC 23769 motA+ and motB+ overexpression mutants, which displayed elongated cell phenotype, increased motility, and productivity. Moreover, the mutant cells produced thicker ribbons of cellulose arranged in looser network when compared to the wild-type strain. In this paper, we present a novel development in obtaining BNC membranes with improved properties using genetic engineering tools.


Assuntos
Acetobacteraceae/química , Acetobacteraceae/genética , Celulose/química , Nanoestruturas/química , Celulose/biossíntese , Edição de Genes , Mutação , Fenótipo , Engenharia Tecidual
5.
N Biotechnol ; 52: 60-68, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31096013

RESUMO

Bacterial nanocellulose (BNC) produced by Komagataeibacter hansenii has received significant attention due to its unique supernetwork structure and properties. It is nevertheless necessary to modify bacterial nanocellulose to achieve materials with desired properties and thus with broader areas of application. The aim here was to influence the 3D structure of BNC by genetic modification of the cellulose producing K. hansenii strain ATCC 53582. Two genes encoding proteins with homology to the MotA and MotB proteins, which participate in motility and energy transfer, were selected for our studies. A disruption mutant of one or both genes and their respective complementation mutants were created. The phenotype analysis of the disruption mutants showed a reduction in motility, which resulted in higher compaction of nanocellulose fibers and improvement in their mechanical properties. The data strongly suggest that these genes play an important role in the formation of BNC membrane by Komagataeibacter species.


Assuntos
Acetobacteraceae/citologia , Acetobacteraceae/genética , Celulose/química , Genes Bacterianos , Mutação/genética , Nanopartículas/química , Acetobacteraceae/ultraestrutura , Proteínas de Bactérias/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Movimento , Homologia de Sequência de Aminoácidos , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Microb Biotechnol ; 12(4): 633-649, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30883026

RESUMO

Bacterial nanocellulose (BNC) produced by aerobic bacteria is a biopolymer with sophisticated technical properties. Although the potential for economically relevant applications is huge, the cost of BNC still limits its application to a few biomedical devices and the edible product Nata de Coco, made available by traditional fermentation methods in Asian countries. Thus, a wider economic relevance of BNC is still dependent on breakthrough developments on the production technology. On the other hand, the development of modified strains able to overproduce BNC with new properties - e.g. porosity, density of fibres crosslinking, mechanical properties, etc. - will certainly allow to overcome investment and cost production issues and enlarge the scope of BNC applications. This review discusses current knowledge about the molecular basis of BNC biosynthesis, its regulations and, finally, presents a perspective on the genetic modification of BNC producers made possible by the new tools available for genetic engineering.


Assuntos
Bactérias Aeróbias/genética , Bactérias Aeróbias/metabolismo , Celulose/metabolismo , Nanoestruturas , Biotecnologia/métodos , Biotecnologia/tendências , Engenharia Metabólica/métodos
7.
Microbiologyopen ; 8(5): e00731, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30365246

RESUMO

Komagataeibacter species are well-recognized bionanocellulose (BNC) producers. This bacterial genus, formerly assigned to Gluconacetobacter, is known for its phenotypic diversity manifested by strain-dependent carbon source preference, BNC production rate, pellicle structure, and strain stability. Here, we performed a comparative study of nineteen Komagataeibacter genomes, three of which were newly contributed in this work. We defined the core genome of the genus, clarified phylogenetic relationships among strains, and provided genetic evidence for the distinction between the two major clades, the K. xylinus and the K. hansenii. We found genomic traits, which likely contribute to the phenotypic diversity between the Komagataeibacter strains. These features include genome flexibility, carbohydrate uptake and regulation of its metabolism, exopolysaccharides synthesis, and the c-di-GMP signaling network. In addition, this work provides a comprehensive functional annotation of carbohydrate metabolism pathways, such as those related to glucose, glycerol, acetan, levan, and cellulose. Findings of this multi-genomic study expand understanding of the genetic variation within the Komagataeibacter genus and facilitate exploiting of its full potential for bionanocellulose production at the industrial scale.


Assuntos
Acetobacteraceae/genética , Celulose/metabolismo , Genoma Bacteriano , Genômica , Acetobacteraceae/classificação , Acetobacteraceae/metabolismo , Genes Bacterianos , Variação Genética , Nanopartículas/metabolismo , Filogenia , Sintenia
8.
Nanomaterials (Basel) ; 8(12)2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30563030

RESUMO

Development of three-dimensional scaffolds mimicking in vivo cells' environment is an ongoing challenge for tissue engineering. Bacterial nano-cellulose (BNC) is a well-known biocompatible material with enormous water-holding capacity. However, a tight spatial organization of cellulose fibers limits cell ingrowth and restricts practical use of BNC-based scaffolds. The aim of this study was to address this issue avoiding any chemical treatment of natural nanomaterial. Genetic modifications of Komagataeibacter hansenii ATCC 23769 strain along with structural and mechanical properties characterization of obtained BNC membranes were conducted. Furthermore, the membranes were evaluated as scaffolds in in vitro assays to verify cells viability and glycosaminoglycan synthesis by chondrogenic ATDC5 cells line as well as RBL-2H3 mast cells degranulation. K. hansenii mutants with increased cell lengths and motility were shown to produce BNC membranes with increased pore sizes. Novel, BNC membranes with relaxed fiber structure revealed superior properties as scaffolds when compared to membranes produced by a wild-type strain. Obtained results confirm that a genetic modification of productive bacterial strain is a plausible way of adjustment of bacterial cellulose properties for tissue engineering applications without the employment of any chemical modifications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...